Course 2: binary search and sorted array
二分法
模板:
int start = 0, end = length-1;
while (start+1 < end){
    int mid = start + (end-start)/2;
    if (nums[mid]==target) {return;}
    else if (nums[mid]<target) {start=mid;}
    else {end = mid;}
}
if (start==end){...}
if (start+1==end){...}
- while-loop is better than recursion
 - 关键:每次要去掉一半
 
二分法Example 1:找第一次出现
Example: Binary search is a famous question in algorithm. For a given sorted array (ascending order) and a target number, find the first index of this number in O(log n) time complexity. If the target number does not exist in the array, return -1. Example If the array is [1, 2, 3, 3, 4, 5, 10], for given target 3, return 2.
class Solution {
    /**
     * @param nums: The integer array.
     * @param target: Target to find.
     * @return: The first position of target. Position starts from 0.
     */
    public int binarySearch(int[] nums, int target) {
        if (nums == null || nums.length == 0) {
            return -1;
        }
        int start = 0, end = nums.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            //尽量往左边靠
            if (nums[mid] == target) {
                end = mid;  
            } else if (nums[mid] < target) {
                start = mid;
            } else {
                end = mid;
            }
        }
        //找first occurance,所以先看start
        if (nums[start] == target) {
            return start;
        }
        if (nums[end] == target) {
            return end;
        }
        return -1;
    }
}
注意点:
while条件分析:退出时,不满足start+1
= end,相邻就退出,虽然后面还要判断一下,但这种写法通用,不容易死循环 - start = end - 1
 - start = end
 
- mid = start + (end - start) / 2
 - start = mid, end = mid:更安全
 
二分法Example 2:找最后一次出现
if (nums[mid] == target) {start = mid;}
if (nums[end] == target) {
    return end;
}
if (nums[start] == target) {
    return start;
}
More example:
Sorted array
- Median of two sorted array: 重要
 - Recover rotated sorted array
45123->12345 三步翻转法: 45 123 54 321 12345 - Rotate String